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TECHNICAL NOTE 1906

AN ANALYTICAL STUDY OF THE STEADY VERTICAL DESCENT IN
AUTOROTATION OF SINGLE-ROTOR HELICOPTERS

By A. A. Nikolsky and Edward Seckel
SUMMARY

A detailed analysis of steady sutorotative vertical descent of a
helicopter is made, Iln which the effect of considering induced velocity
constant over the disk 1s examined. The induced velocity is first
considered constant, then verlieble over the disk; and the results are
compared for a typical helicopter. Although considering the induced
veloclty constant over the disk causes conslderabls error in the load
distribution along a blade, the revolutions per minute of the rotor and
rate of descent are found to be negliglbly affected for small angles of
blade pitch. For high pitch angles, where blade stalling becomes
important, the theoretical difference between blade load distributions
obtained by considering induced velocity constant and variable may be
expected to be enough to cause quantitative disagreement between the
constant induced—velocility theory and experiment.

A brief study is made of the stability of autorotation, considering
the effect of blade stalling. At small values of blade incidence,
stabllity of the autorotation willl be adequate, and blade stalling can
be neglected. As the blade Incldence increases, the risk of an upgust
causing the blades to stall and the rotor to stop becomes acute.

INTRODUCTION

Thie report is the result of the first part of a broad program to
analyze the transient motions of a helicopter, which occur in the varlous
phases of flight followlng power fallure. As such, 1t 1s proper that it
be concerned wilth steady—state vertical flight without power, or steady
autorotative descent.

The basis for the analysis is contained in a paper by Glauert
(reference 1), although a somewhat simller approach was made by Bennett
in reference 2. There 1s no theory adequate to analyze the states of a
rotor in autorotative vertlcal descent, and recourse must be made to
an empirical relationship between the velocity of descent and total flow
through the rotor disk. As more experimental evidence becomes avalleable,
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it will be possible to modify the necessary empiricisms to improve the
agreement between analysis and fact.

This work was conducted atPrinceton University under the sponsor—
ship and with the financial assistance of the National Advisory Committee
for Aeronsutics.

SYMBOLS

Physical Quantities

W gross welight, pounds

b number of blades per rotor

R blade radius, feet

r radlel distence to blade element, feet

c blade—section chord, feet
"NR
crldr
0
Cq equlvalent blade chord, feet- [ cg = ——m—
R
J[ rear
0
oy blade—section solidlity ratlio (%%
bee
o rotor solidity ratlo —
R
e blede-section pitch angle from zero 1ift, radlans unless

otherwlise stated

0o blade pitch angle at hub
o, lineer twist of blade (@ = 0 + 61x)
s disk area, square feet (nRe)

o) mass density of-ailr, slugs per cublc foot



NACA TN 1906

C3
Cdo

8,571,80503

Alr-Flow Parameters

true alrspeed of helicopter along flight path, feet
per second

vertical component of V (positive down)
rotor angular veloclty, radians per second

induced inflow velocity at rotor (alwaeys positive),
Teet per second

Vv -V UP
inflow ratio at a blade element —_— ==
QR QR

resultant velocity of the alr relative to a blade
element, perpendicular to blade-—span axis, feet
per second

component of U perpendicular to axis of no feathering
(positive up toward rotor)

blade—section angle of attack from zero 1lift, radians
unless otherwise stated

inflow ratio with Induced velocity assumed constant
over the disk (&
QR

average value of Up over disk (when induced velocity
is assumed constant over the disk), feet per second
(positive up)
Blade—Hlement Aerodynamlc Characteristics
section 1ift coefficient
section proflle—drag coefflcient
coefficlients in power series for cg, &8 a function

of a, <?do = By + B1ay + Spa,S + 83ar3 + e e l)

Caq corrected to account for friction torque

8y corrected to account for friction torque
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JaloTy) increment in 8y to agcownt for friction torque
(50" = B0 + A%Q)
where

Qr = — -ée W2R4(A50)‘/;l ex3dx

cdo'_= B! + S0 + 82%2 + 83(1.1.3 + e o .

de
a slope of 1ift curve for.blade, per radlan <th;
clm maximm section lift—cosefficlent
Xg blade station inboard of which blade is stalled
czs 1ift coefficient of stalled blade section
S5 profile—drag coefficlent of stalled blade section
r sectlon thrust coefficlent based on resultant
veloclty F = ——r 2(-62-
ll-nerP d
£ section thrust coefficlent based on descending
. 1 aT
veloclty T = (—)
lmrva2 dr
Rotor Asrodynamic Characteristics
T rotor thrust,; pounds -
Q rotor aerodynamic torque, pound—feet
Qo rotor friction torque, pound—feet (may include torque
to drive auxiliary mechanisms)
Crp rotor thrust coefficient (CT = —~2—T———2->
xR (QR)

CQ rotor torque coefficlent (CQ = - (QR)E)
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F

Hl

rotor thrust coefficient based on resultant

velocity [ F = —L
2:rp1'«’{2u2

rotor thrust coefficient based on descending
= T

veloclty | £ = ————

2n:pR2Vv2

Miscellaneous

constant in empirical relation between F

and F (l~==2 K l)
£ F

ady
P2 = 5%
_ 16Ke
P3 = 80y
cqy = 2_0519.2_ (2)
ao a0932 8
1
_ 1
°p =35 ), cox2dx
1l
c3 = i— cx dx
Ce
0
ECQ 2
Ch_ = T Q
1
05 = - ci'— ch(SO' + 819 + 6292)dx
S Jo

1
C6=a02—c—-

e = c3(a - 3o)

1
cx2(d] + 2828)dx
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.2
Ch303,02,01,00 coefficlents in power serles for —gg as a function

2C
of M —O'_Q = 00 + Cin + 02)\,2 + 031.3 + C)-I-)"LL)

METHOD OF ANALYSTS

The Relatlion between

ol |
M|

It was shown by Lock in reference 3 that, for small values of
resultant axial air velocity u through a rotor disk, the vortex and
momentum theories are inapplicable. A relationship between wu and the
vertical component of descending veloclty Vy was found experimentally

and presented in terms of nondimensional coefficients F and Ff by
Glauert in reference 1. The relation between F sand T glven by
Glauert is given in figure 1 of-this report (the solid line). The upper
branch of the curve is for the windmill brake state, u> 0 (in which
the rotor operates es a windmill, the average flow through the rotor being
in the direction of the free siream); the lower branch Is for the vortex
ring state, u < 0 (in which the actual flow through the rotor is turbu—
lent, at some places being in the direction of the free stream, and at
soms against. On the average, however, the flow through the rotor is
against the free stresm).

In order to slmplify the analytical treatment, and because there is
gsome doubt as to the exact relatlonship between £ and F, it is assumed
in this report that the relationship 1s of the form

=2 +x (1)

M| |
=

which is 1llustrated in figure .l for XK = 1 and 2. The upper branches
(corresponding to~the plus sign) are again for the windmill brake
state, u > 0; the lower (for the minus sign) are for the vortex ring

state, u <O.

In this report, K will usually be taken as 2, so that, in
hovering -%;= 0), -%;= 1, to agree with the vortex theory which 1s known

£ F . A -
to be reasonebly accurate in its application to hovering. The effect of
the different assumptions for_-%;againstéé- on descending veloclty in
F

steady autorotation 1s presented in figure 2, for a sample heiicopter
(see SAMPLE CALCULATIONS) with various blade incidences. It 1s seen
that the differences are not large.
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Derivation of the Equations
It 1s now assumed that the same relationship that exists between
and P, for the rotor, exists as well between the corresponding cosffi-—
clents f and F for any blade ssection, where, however, f &and F are
variable over the disk.

Considering now any blade section, from the definitions of f and T,

there can be written
F AV,

and combining eguations (1) and (2),

_ 2
2F =1 ¥ K<;§> (3)

where, in equation (3) and hereafter, the upper sign corresponds to the
upper branch of l against ; (the windmill brake state) and the lower
sign to the lower branch of L against = (the vortex ring state).

Substituting in equation (3) the definition of £, and, since only
vertical flight is concerned, dropping the subscript v on Vg,

= 2n:pxR2<V2 T KUP2) (%)
From blade—element considerations,

@ _p 253 Jp_
— =5 abcx20°R (e + xSIR> (5)
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Combining with equation (4) and letting

-
p = l 2 L“'
1 “\QR/ ac,®
&Ux
P2 = B
(6)
Dy = 16Ko ?
3 a0,
U
A'x = —P.
QR
J
there results, for the two states
- _ 2
M % 2Dk F 227p3(p1 — %) = 0 (7)

For the windmlll brake state, Uf >0, Ay > 0, and the solution
must be

Ax = —pa[l —VL P3(pl - x)] (8)

and 1t must-be that x < Py-

For the vortex ring state, Uf < 0, Ay < 0, and the solution
must be :

e = Bl = T = B30y = ) | (%)

-and 1t must be that x > p;3.

It is apparent then, that blade elements inboard of station x = py
are in the windmill brake state where the upper branch of % against %
applles, and that blade elements outboard of station =x =7p; are in the

applies. A£

i o

vortex ring state, where the lower branch of % agalnst
station x =Py, Ax =Up = O,
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For steady autorotation, the thrust and torque equations are well
known:

1
P Ax). 2
W=T—Eba92R3f c(@-l-.?x)xdx (9)
0 .
and
: A
Q = 0 = § par¥ a.c9+Tx)xxx26x—
0
1
cx3<80’ + 8708 + 6292>dx -
0
1 1
- (51 + 2652>dx - cBoxAy2dx (10)
0 0 |

in which the drag coefflcient 1s represented by the series

= 2
Cdo' = 60’ + 81(11, + 82(11,

The solution of these equations 1Involves the determination, by
trial and error, of the ratio g% such that the computed distribution
of Ay (equations (8) and (8a)) satisfies the torque equation.

Solution with Varilable Induced Velocity

Steps in the solution of equations (8), (9), and (10) are outlined
below:

(1) Assume a value for é%,'or compute  an approximate value

by assuming induced velocity constant over the disk by the method
given in the following section.

(2) Choose & number of stations, such as x = 0.2, 0.4, 0.6,
0.8, and 1.0, and calculate at each station the values of Py, Po,
and p; from equations (6).
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(3) Calculate Ay at each station, from equation (8)
where X < Py, Or from eguation (8a) where x > py.

(4) Substitute the values of A\, Into equation (10) and
evaluate the integrals graphlcally or by Simpsont's ruls.
Equation (10) must be satisfied. If it is not, a different }
value of f%% should be assumed, and steps (1) through (4)
repeated until the torque is substantially zero.. Starting with
the value of é%- from constant induced—veloclty considerations
will lead usually to an accurate determination of S%% for zero _—

torque in three triels. The final value ofL-g%- will usually be

between O and 10 percent larger than that for canstant induced -
velocity.

(5) Having found the value of g%- for zero torque, by

trial and error in step (L), substitute the appropriate values
of Ay 1nto equation (9), end evaluate the integral graphically
or by Simpsonts rule. Solve equation (9) for .

(6) From the value of 5%- from step (4), and 9 from
step (5), solve for the descending velocity V.

S8olution with Induced Velocity Assumed Constant over the Disk

If 1t1s assumsd that the Induced velocliy is constant over the
disk, then an approximate solution of the above eguations can readily
be obtalned analytically. In this case Ay 18 a constant A; and the
thrust and torque equatlions can be written

ey = 02<02 + c3x) _ (11)
and )
c) = 92<c5 + ch + c77L2) (12)
where
2C
0 = o2 o = (D) (13)

ag &a g
l »
cp = Cl_ef cox2ax (13a)
0
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1 .
1
cg = e cx dx (13b)
o]
ECQ )
ey =— @ (13c)
1
05 = - %] cx3<50’ + 890 + 8292>dx (134d)
0]
1
Cg = acp — cl—ef cxa(al + 2826)dx (13e)
0
cq = c3(a - 62) | (13f)

In steady autorotation, the torque equals zero (ch_ = O) s 80 that
equation (12) reduces to

onZ + cgh + 05 =0 (1k)

Since, with induced veloclty constant, 1t must be assumed that the
rotor is in the windmill brake state (A > 0), the solution must be

A = —cg + \Jeg? — heser (1ha)

207

The followlng sequence may then be set down for solving the problem
under ths assumption of constant induced velocity:

(1) Calculate the coefficients ¢, Cp, C3s C)s Css Ogs
and c from equations (13) through (13f)

(2) Calculate A from equation (1lha)

(3) Calculate © from equation (11)
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(4) Calculate u from the definition of A (u = AfR)

(5) Calculate F from its definition ( F= —T—)

21tpR2u2

(6) Calculate f from eguation (1), using the plus sign
(for the windmill brake state)

(7) From the definitlon of ¥, calculate V <V = f——T—:
2n¢R2f

Stability of Autorotaetion

Blade element.— Considering, for the moment, the stabllity of a

solitary blade element In autorotative vertical descent, the autorotation
will be sald to be stable, if, followling a disturbance from the equilib~
rium condition of torque equal to zero, the blade element tends to
return to the same equilibrium state. If the disturbance made the torque
decelerating, say, then

(1) @ would decrease

(2) &T and v would decrease
(3) V would increase

(4) Hence Ay would increase

If the slope of 4Q agalnst Ay, éé%ﬂl, were positive (torque becoming
X

more autorotative for an increase in Ay), then the equilibrium (4Q = O)
would tend to be restored, and the autorotation would be stable.

o

Conversely, 1f .§£232-< 0, the autorotation would be unstable.
X _

Rotor.— The criterion for the stability of the rotor as a whole,
by extenslion of that for the blade element, is

dx
dx > O

5 Pz
Although the evaluatlion of the above integral 1s prohlbitively

difficult considering variable induced velocity, under the assumption
of constant induced veloéclity over the disk, it reduces to

R

—>0
oM
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It may be noted that for A = 0, the torque would be negative
(decelerating) for any pitch 8, so that, at the first trim point (Q = 0)
on a curve of @ against A, §Q must be positive. Therefore, for infin-

oA
itesimal disturbances from this trim condition, the asutorotation would
be stable. As A 1Increases, however, beyond the first trim point, the
angle of attack of the blades Increases, untll the blades stall, and the
curve of @ agalnst A drops sharply through a second trim point

where §x-< 0, and where the autorotatlion would be unstable.

Above a critical value of blade Incidence the curve for Q agalnst A
does not Intersect the Q = 0 axis. Hence In this case there 1s no trim
point, and no autorotation is possible.

Below the critical blade angle, where both trim points exist, auto—
rotation can only be steady at the flrst, stable trim point. The slightest
disturbance from the unstable trim state would elther cause the rotor to
revert to the flrst, stable trim state, or stop autorotating completely.

If the momentary increase in A, due to an upgust hitting a rotor
in stable autorotatlon at the first trim point, were sufficlent to
increase A beyond the second trim point, the autorotation would stop.
If the increase In A were less than the difference in the two trim
points, then the autorotation would return to the steady stable state
at the first trim point.

In order to investigate the critical blade angle above which auto—
rotatlion 1s impossible, and, for those blade angles whers steady auto—
rotation can exist, to predict the value of an upgust which would cause
the autorotation to stop, 1t 1s necessary to include the effect of blade
stalling in the expressions for drag and 1ift coefficlents as functions
of angle of attack. For this purpose, it 1s assumed that, below the
stall, the drag coefficlent 1s given by a cubic In angle of attack,
instead of the usual quadratic, and that, above the stall, the drag and
1lift coefficients are constant at values denoted by Cag and Clg?

respectively. Thus, below the stall,

Ca,' = 80" + d1ap + SgaTE + 83ar3 (15)
The blade statlon at which the stall begins is denoted xg, and is
given by

A
= gl 8 + =— 16
czmax Xg (16)
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or
A

°lnax _ ' (162)
B _

JCS-"'-

For blades of constant chord, the torgue equation 1s

2 l.o

c

9 - an?(g +-l)dx +
v p

Xg

Xs

c zsuedx -
(0]

1.0

x3[50' + 81<9 + ;—) + 82<9 + %)2 + 83<e + ;.)3]53( -

Xs

Xg

8x3dx (17)

As written above, the equation applies for O0< xXg < 1.0, which
18 the range of interest here. For @ = Constant (no twist), integrating
equation (17) and substituting from equation (16a),

2¢ _ .
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where
Cy = 1 n [(60' - 55) + 540 + 6292 + 6393:[ +
€ lmax
l+< = — @
1 ) 2]
5 28 —
ey 3[<l+°1s>+< 2 - a)o + 3036° | +
mex
3( a )
1 53
2( ma.x_ ) < max_
a a
Cp = %‘-(a ~ 8y — 3539)

c, = % [_al + (a - 252)9 - 35392]

1
Co = — E(%' + 818 + 56° + 53e3>

o
The values of A for @ = 0, and the slopse, 5%, at those trim

2C
points can best be investigated by calculating and plotting -;—Q- as a

function of A for various values of 6.
SAMPLE CALCULATIONS

The physical properties for the helicopter chosen for the sample
calculations are as follows:
W = 2700 pounds
b

=3

15
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R = 20 fest
¢ = 1.25 feet (constant) = ¢
a = 5.6 per radian

cq, = 0-0087 — 0.0216a + 0.40x,2

Variable Induced Velocity

For i1llustrative purposes, & linear twist of —6° 1s chosen
with 6g, 7sg = 4°, so that, in degrees,

g = 805 -— 6x
or, 1in radians,
6 = 0.1483 —~ 0.1048
v
A vdlue of- (——) of 0.0750 18 assumed.
T )g=0 75

Performing steps (1) through (3) in the section entitled "Solution

with Varieble Induced Velocity," the varlation of Ay with x is
computed. For example, for x = 0.6, by equations (6),

Py = 0.788
Py = 0.0209
p3 = 8.20

8ince x < p;, using equation (8),

Graphical integration of equation (10), using the variation of

Ax

computed, glves a net area for Q vVery nearly zero. Therefore the value

of (l is sufficlently accurate.
(9124 Q=0

Graphical integration of equation (9) gives
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whence Q = 20.9 radians per second. Then

vV = (%)nn = 31.3 feet per second

At blade station x = 0.6, the blade angle of attack is

A
ap = 8 + = = 8.5 — 6(0.6) + 0—6%2-1"- 57.3 = 6.1°
Constant Induced Velocity

For the same pitch and linear twist, using equatioms (13)
through (13f),

c; = 13.50 c5 = -0.00226
cy = 0.0233 cg = 0.1190
oy = 0.50 Cop = 2.60

From equation (1lha),
A = 0.0145

From equation (11),

1l = 21.0 radians per secand
u = A0R= 6.09 feet per second
F o = 12,2

2pr¥

From equation (1), using the plus sign and K = 2,

whence

’ T
vV = = 31.2 feet per second
21rp_R‘§f
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At-blade station x = 0.6, the angle of attack is

0.0145 -
2010 _ ¢
0.6

o

) %=9+§.=8.5'—6(0.6) + 57.3 -3"

8tability of Autorotation

For this calculatlion the cublc dreg polar is assumed,

oq ' = 0.0087 + 0.0600u, — 1.28a,> + 8.0u3

corresponding to

8o = 0.0087
81 = 0.0600
8y = —1.28
83 = 8.00

Values pertinent to stalling are taken to be

= 1.2
c3 1.20
c, = 0.60
8, = 0.250

Values of-the coefflcients Cy, 03, Co, Cy, and- Cy are computed
2

C
for various values of @, and the variation of —Eg with A 1is computed.

Although these calculations are not -given in detail, the resglts are
presented in figure 3. The dashed lines are the curves of —EQ against A

computed by equation (12) in which blade stalling is neglected. They
are shown to indicate the effects of blade stalling, and to indlcate-the
ranges of A &and @ where blade stalling may be neglected.
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DISCUSSION OF CALCULATIONS

Comparison of Varlable and Constant Induced-Velocity Theories

Calculations for rate of descent V and rotor speed § for the
sample helicopter (see SAMPLE CALCULATIONS) have been carried out for
different amounts of blade twist, by both constant and varisble induced—
velocity methods. The results, shown in figure 4, indicate that, for
performance calculations, the results by the two methods are practically
iIndistinguishabls.

The variations of angle of attack along the blade, as computed for
the ebove cases by the two methods, are plotted in figure 5. Although
the agreement 1s good for negatlive twist, 1t 1s clear that the theoretical
blade load distribution 1s, in general, considerably affected by the
assumption of constant lnduced velocity.

Stebllity of Autorotation

2
The varlatlion of —EQ against A for various values of @, for the
sample helicopter, is given In flgure 3. The blade drag polar used for
these calculations 1s compared with the quadratic expression (used in
the other calculations) in figure 6. It will be noted that the two are
ossentially identical at low 1ift coefflcients, but that at higher 1ift
coefficlents & more reallstic lncrease 1in drag 1s given by the cubic
expression used. Also, the stall is cansidered.

Consideration of figure 3 shows that for small blade incidence,
the second, unstable trim point ls far enough from the stable one that
even a strong upgust would not cause A to increase beyond 1t. At
high values of incidence, however, the two trim points are so close
together that a rotor In stable autorotation at the first point might
become unstable, and stop autorotation, 1f hit by even a weak upgust,
with 1ts attendant momentary increase of Ai.

There is, of course, a value of @ (about 8.8°, from the fig.)
gbove which there is no trim point, and therefore autorotation Is not
possible. It 1s worth noting that using the quadratic drag polar, in
which stall is neglected, not only results In failure to predict the
second, unsteble trim point and its attendant danger at hilgh values
of @, but would also indicate that autorotation would be possible at
any value of 6. It 1s apparent, then, that the blade stall cannot be

neglected at high incidence.

In figure 7, values of A for the filrst trim points are plotted
agalnst 6, as read from the curves of flgure 3. TFor comparison, values
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of A computed by the method given in the sectlon entitled "Solution
with Induced Veloclity Assumed Constant over the Disk," using the quad—
ratic drag polar and neglecting the stall, are also shown. For small
values of @, the difference is very slight, indicating that blade
stalling can safely be neglected for performance calculations at low
incldence.

It should be noted that the results obtained from the study of-
stability of autorotation should be considered purely gqualitative. The
most important reason is that the constant Induced—velocity theory used
fails to predict accurately the angle—of--attack distribution along the
blade, and hence cannot accurately account for the all—important distri-
butlon of stall at high angles of incldence where the stabllity is
questlconable. To be confident of gquantitative results it would first be

necessary, therefore, to predict accurately the actual induced—velocity
distribution. It would also be necessary to represent accurately the
drag curve at angles &bove the stall, and to account for Reynolds number
effect on drag and meximum 1ift at various blade statlons.

CONCLUSIONS

Although they are somewhat limited by the assumptions used in the
theory on which they are based, the following conclusions seem Justified:

1. Rate of descent and rotor speed are not critically affected by
different assumptions for rotor thrust coefficient based on descending
velocity F against rotor thrust coefficlent based an resultant

velocity F 1n the range of conditlons encountsred 1n steady autorotative
descents- )

2. Por the computation of rate of descent and rotor speed, constant
induced—velocity theory may be used at low incildence where stalling may
be neglected. At high incildences, blade stalling must be accounted for
in order to obtaln even qualitative agreement between theory and practice.
For quantitative -agreement in this case, it would probably be necessary
to use a variable induced—veloclty theory.

3. At high values of incldence, although ths auntorotatlon may be
stable for infinitesimal disturbances, a finite disturbance such as an
upgust might well stall enough of the blades to put-the rotor in an
unstable regime where it would cease autorotating. There is little danger
of thie, at least for aerodynamically clean blades, at low incldence.

4. Por the sample design studied, the constant induced—velocity
theory, accounting for blade stalling, indicates a critical value of
blade incidence of about 8. 8° , above which steady autorotation would not

be posslble. =

Princeton Universlty
Princeton, N. J., May 4, 1948
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